幸好,黎曼口中没有冒出这种能让他瞬间心肌梗塞的话,黑发黑眼的少年按照自己的步调翻看《数理》,他修长的手指在其中一页上停顿了许久,过了会儿才抬起头对海勒说:“可以借我一支笔,两张纸吗?”
海勒把啃到一半的手指头“蹭”得放下,又飞奔上楼拿羊皮纸和笔。
黎曼接过海勒递来的纸笔,陷入了沉思。
这本杂志上提出的开平方的方法原理倒是很简单,就是二项式定理,然后就是一些计算上的劳作,反复逼近,黎曼如果要完成那位名为切斯特的青年自说自话布置给他的任务,倒也没什么难度,不过……二项式定理,他倒有些别的想法。
他来到王城以来,虽然大多数时间都在忙着升级,找材料,忽悠小公爵,但他也没忘了自己要靠微积分巩固数学家地位的大计……
问题就在于,他苦思冥想,也没想到怎么循序渐进地让这个时代的人接受微积分思想。哪个本科生不是上来就被告知“当Δx趋近于无穷小时……”
但是这个时代的人,对“无穷”这个概念,还视作洪水猛兽,一想到无穷就觉得恐惧,觉得头疼。
一想到苍白脸的罗切斯特先生居然是这个时代最伟大的数学家教出来的学生,他还对黎曼要求将圆无限切分这一想法嗤之以鼻,黎曼就觉得微积分推广这个任务属实有些难。
不过二项式定理……准确地说,牛顿提出的广义二项式定理……
黎曼觉得脑海中的迷雾被拨散了一些,任何一个学过无穷级数的人,都知道有一些无穷级数是可以求和的,也就是所谓的它们是收敛的。
比如,每个高数学子都该铭记于心的“几个常用的麦克劳林公式”。
由于不知道该怎么在晋江打公式,这里只附上一个最好打的,也是乍一看最反直觉的:
e^x=1+x+x^2/2!+…+x^n/n!+…(x可以从负无穷取到正无穷)